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Abstract. Within the power–law approach for noise amplitude dependence on stochastic variables, we
present a picture of noise–induced transitions in systems affected by coloured multiplicative noise. The
governed equations for main statistical moments are obtained and investigated in detail. We show that a
reentrant noise–induced transition is realized within a window of the control parameter.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise and Brownian motion –
47.20.Ky Nonlinearity (including bifurcation theory)

1 Introduction

The study of dynamical systems perturbed by noise is re-
current in many contexts of physics and other sciences [1].
Noise is known to play crucial role in systems out–of–
equilibrium where the variation of the noise intensity leads
to dramatic changes [2]. In fact, zero-dimensional systems
can undergo noise–induced unimodal–bimodal transitions,
which are not reduced to phase transitions in usual ther-
modynamical sense. Such type of transitions are described
in terms of the most probable value of the stochastic vari-
able, which reflects the appearing new maxima of the
probability density function [3]. As a rule, noise–induced
transitions keep symmetry of distribution functions due
to the fact that the first statistical moment equals zero.

In contrary, phase transitions in d–dimensional sys-
tems, for which the symmetry breaking is inherent, are
described in terms of the first statistical moment that
plays a role of the order parameter to measure the above
asymmetry. Making use of the mean–field approach in d–
dimensional systems shows the crucial role of inhomogene-
ity that may change the picture of the transition dras-
tically (reentrant order–disorder phase transitions) [4–6].
On the other hand, a self–consistent evolution of stochas-
tic systems affected by white noise with growing intensity
may even provide symmetry breaking in zero–dimensional
systems [7]. It allows one to represent the noise–induced
transition along the lines of usual thermodynamical ap-
proach [8] when the first statistical moment 〈x〉 is added
by variance 〈(δx)2〉.

In this work, we start with a stochastic differential
equation with a force defined through x4–potential and
a coloured multiplicative noise. It allows us to obtain the
governed equations for the first statistical moment and
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variance to describe a self–consistent picture of the noise–
induced transitions in usual manner. In this line, we as-
sociate the state 〈x〉 6= 0 as an ordered phase and state
〈x〉 = 0 as a disordered one. Giving integral characteris-
tics of the probability density function, such representa-
tion allows us to get a deep insight to the picture of the
noise–induced transition following from explicit form of
this function [9].

The paper is organized in the following manner. In
Section 2 we present the main assumptions and the basic
equations of our approach. Sections 3 and 4 are devoted
to considering the evolution of the disordered system and
the system with the ordered state, respectively. We show
that 〈x〉 behaves itself in a nontrivial manner in a window
of noise correlation time and control parameter. Finally,
Section 5 contains concluding remarks.

2 Model and basic equations

In the simplest form, the problem of coloured noise can
be introduced by considering a relevant macrovariable
x(t) (density of a given physical quantity) that satisfies
a stochastic differential equation of the form

ẋ = f0(x) + g0(x)ζ(t), (1)

where f0(x) represents a deterministic force. The influ-
ence of the bath is represented through the second term
being a fluctuating force with an amplitude g0(x). Here
ζ(t) is the random term, quite often assumed to be gaus-
sianly distributed. Without loss of generality, we take the
deterministic force in the form

f0(x) = εx − x3, (2)
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which can be obtained from a bistable potential, f0(x) =
−V ′(x), with

V (x) = −ε

2
x2 +

1
4
x4. (3)

Here ε is the parameter that acts as a dimensionless tem-
perature, counted from the critical value.

Considering a whole set of models with typical be-
haviour we can use the power–law approximation for the
noise amplitude

g0(x) = xa, a ∈ [0, 1]. (4)

Such a constraint allows us to describe a large family of
models which belong to the systems with a self–similar
phase space. In the particular cases we can pass to the
ordinary thermodynamic system (a = 0), directed perco-
lation model (a = 1/2), population dynamics and forest
fires (a = 1).

In the simplest case for ζ(t) we can use the definition
of the Ornstein–Uhlenbeck process

τ ζ̇ = −ζ + ξ(t), (5)

where τ is the correlation time, ξ(t) is the white noise
source (〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′)).

If we take the time derivative of equation (1) and re-
place first ζ̇ in terms of ζ and ξ from equation (5) and then
ζ in terms of ẋ and x from equation (1) we can obtain the
non–Markovian stochastic differential equation

τ

(
ẍ − g′0

g0
ẋ2

)
+ σẋ = f0 + g0ξ(t), (6)

where

σ =
[
1 − τ

(
f ′
0 − f0

g′0
g0

)]
· (7)

According to the unified coloured noise approxima-
tion [6,10] we use the adiabatic elimination (neglecting
ẍ) and neglect ẋ2. Moreover, we have to note that the
ξ(t)-term in Equation (5) is the white noise and (obeying
the mathematical rules) we pass to the Itô interpretation
(we account for the physics of the process with the help
of Eq. (5)).

The problem now lies in obtaining an evolution equa-
tion for the order parameter η. Averaging the reduced
stochastic equation, we get the equation of motion in the
form

〈σ(x)ẋ〉 = 〈f0(x)〉. (8)

The term on the left hand side can be represented as a full
derivative, i.e. dy(x)/dt = σdx/dt, and after averaging,
following [1], we get 〈dy(x)/dt〉 = 〈σdx〉/dt. Introducing
the notation for the autocorrelator S = 〈(δx)2〉 the left
hand side of equation (8) reads

〈σ(x)ẋ〉 = η̇(ε + κ(η2 + S)) + κηṠ, (9)

where

ε = 1 − ετ(1 − a), κ = τ(3 − a). (10)

The resulting equation for the first statistical moment now
reads

[ε + κ(η2 + S)]η̇ + κηṠ = η(ε − η2) − 3ηS. (11)

Now our goal is to construct an evolution equation for
the autocorrelator. We exploit the conventional device
and proceed from the following differential: dy2 = 2ydy +
(dy)2. According to the aforementioned stochastic process
dy(x(t)) we find: dy2 = ε2dx2 + (2εκ/3)dx4 + (κ/3)2dx6.
Making use of the supposition x6 � 1, the reduced equa-
tion for the second moment can be rewritten as 〈dy2/dt〉 ≈
ε2d〈x2〉/dt +(2εκ/3)d〈x4〉/dt. In the common mathemat-
ical notation for the stochastic differential we have

dy = f0(x)dt + g0(x)dW, (12)

where dy is the increment of the solution process and dW
is the increment of the Wiener process. Moreover, dW is
the statistically independent of the random variable y(t′)
for t′ ≤ t, and dW 2 can be replaced by dt. This enables
one to write down the equation for the variance in the
form

2εη

[
ε + 4κ

(
1
3
η2 + S

)]
η̇ + ε[ε + 4κ(η2 + S)]Ṡ =

2
[
εε(η2 + S) −

(
ε − κε

3

)
(η4 + 6η2S + 3S2)

]
+ 〈x2a〉.

(13)

This equation combines the integer order averages and the
fractional one, namely 〈g2

0(x)〉 = 〈x2a〉. Since it is not pos-
sible to find an analytical closed form for the correspond-
ing moment 〈x2a〉 as a function of 〈x〉 or/and 〈x2〉. It is
usually replaced by a function with the same asymptotic
properties which, ultimately, determine the global features
of the process. A possible form of such an approximation
was given in [7]. Here we use the same suppositions. We
assume that the distribution function of the system states
is a homogeneous function, i.e.

P (x) ≈ Ax−2a, A ≡ 1
2
|1 − 2a|b|1−2a|, (14)

where the cut-off parameter b → 0. It provides the follow-
ing approximation:

〈xnq〉 = αn(q)〈xn〉pn(q) (15)

where

pn(q) =
1 − 2a + nq

1 − 2a + n
,

αn(q) = A
n(1−q)
1−2a+n p−1

n (q)(1 − 2a + n)pn(q)−1, (16)

n is an integer number, q takes a fractional magnitude. A
keypoint of the system with the multiplicative noise (4)
is that its behaviour is governed by the noise exponent a.
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At 1/2 < a < 1, when the fractal dimension of the phase
space D = 2(1 − a) is less than 1, the system is always
disordered and its evolution is represented by the autocor-
relator S(t). It provides q > 1 in equation (15), hence the
fractional order average is expressed through the autocor-
relator S(t). In the case a < 1/2, where D > 1, the system
undergoes noise–induced phase transition and in the frac-
tional order average we account a contribution given by
the order parameter η (here q < 1 in Eq. (15))1. Therefore,
we can rewrite equation (15) in the form

〈x2a〉 =
{

α1η
p1 , 0 < a < 1

2 ,
α2S

p2 , 1
2 < a < 1,

(17)

where the multiplier and exponent are defined as

α1 = A(1−2a)p1p−p1
1 , p1 =

1
2(1 − a)

,

α2 = A2(1−a)p2p−p2
2 , p2 =

1
(3 − 2a)

· (18)

3 Evolution of disordered system

Let us consider the evolution of the system in the domain
a > 1/2, at first. In such a case the system is affected by
the absorbing state x = 0. The singularity of the prob-
ability density function does not allow passage to other
states except absorbing one. Therefore, for the first sta-
tistical moment we have η(t) = 0. Hence, the system can
be considered as the disordered one. Therefore, the evo-
lution of the system is governed by the equation for the
autocorrelator

Ṡ
( ε

2
+ 2κS

)
= S

(
ε − S

(
3 − εκ

ε

))
+ α2S

p2 . (19)

Time dependencies of the autocorellator are presented in
Figure 1. It is seen that S(t) monotonically attains the
stationary magnitude determined by the equation

ε −
(
3 − εκ

ε

)
S0 + α2S

p2−1
0 = 0 (20)

at condition S0 6= −ε/4κ. In Figure 2 we plot steady
states at different values of the noise correlation time τ
and different values of the control parameter ε. According
to equation (20), with an ε or τ increase the stationary
value S0 rises from the minimal magnitude. Let us pass
to the limit S � 1. If we put Sp2 � S � S2 then equa-
tion (19) gives the power–law time dependence

St→0 = Bt
1

1−p2 , B =
(

2(1 − p2)α2

ε

) 1
1−p2 · (21)

In the opposite case S0 − S � S0 one has an exponential
form S − S0 ∝ eλt, where λ = 2ε−1[ε(1 − p2) + S0p2(3 −
εκ/ε)].

1 Here we need to stress that unimodal–bimodal noise–
induced transitions, where x0 is the order parameter, can be
realized at arbitrary magnitude of the exponent a.
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Fig. 1. Time dependence of the autocorrelator S at ε = 0.6,
τ = 0.5, a = 0.8.
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Fig. 2. Stationary states of the system at a = 0.8: (a) S0

vs. control parameter at different values of τ ; (b) S0 vs. noise
correlation time at different values of ε.
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4 Evolution of ordering system

A more interesting situation of the system behaviour can
be observed in the case a < 1/2. At small values of the ex-
ponent a the character of the boundary x = 0 is changed
and the absorbing state disappears. In such a case we have
a nontrivial magnitude for the first moment 〈x(t)〉. There-
fore, the dynamics of the system is governed by equations
for the order parameter and autocorrelator

γ(η, S)η̇ = η[ε − η2 − 3S][ε + 4κ(η2 + S)]

− 2κη
[
ε(η2 + S) −

(
1 − κε

3ε

)
(η4 + 6η2S + 3S2)

]

− κεα1η
p1+1, (22)

β(η, S)Ṡ =
[
ε(η2 + S) −

(
1 − κε

3ε

)
(η4 + 6η2S + 3S2)

]

× [ε + κ(η2 + S)]

− η2

[
ε + 4κ

(
η2

3
+ S

)]
[ε − η2 − 3S]

+ [ε + κ(η2 + S)]α1η
p1 , (23)

where we use the following notations

γ(η, S) = [ε + κ(η2 + S)][ε + 4κ(η2 + S)]

− 2η2κ

[
ε + 4κ

(
η2

3
+ S

)]
, (24)

β(η, S) =
[ ε

2
+ 2κ(η2 + S)

]
[ε + κ(η2 + S)]

− κη2

[
ε + 4κ

(
η2

3
+ S

)]
· (25)

The obtained closed-loop system of differential equa-
tions can be analyzed with the help of the phase plane
method. From the corresponding phase portrait (Fig. 3a)
it is seen that at small magnitudes of the control parame-
ter ε there is only one attractive point C0 with coordinates
η0 = 0, S0 = (ε/3)[(1 − ετ(1 − a))/(1 − 2ετ(1 − 2a/3))].

If the control parameter increases then saddle and at-
tractive points are appeared. Coordinates of these points
are given as solutions of the stationary equations

[ε − η2
0 − 3S0][ε + 4κ(η2

0 + S0)] =

2κ
[
ε(η2

0 + S0) −
(
1 − κε

3ε

)
(η4

0 + 6η2
0S + 3S2

0)
]

+ κεα1η
p1
0 , (26)

[
ε(η2

0 + S0) −
(
1 − κε

3ε

)
(η4

0 + 6η2
0S0 + 3S2

0)
]

× [ε + κ(η2
0 + S0)] =

η2
0

[
ε + 4κ

(
η2
0

3
+ S0

)]
[ε − η2

0 − 3S0]

− [ε + κ(η2
0 + S0)]α1η

p1
0 . (27)
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Fig. 3. Phase portraits at a = 0.2: (a) ε = 0.1, τ = 0.01; (b) at
ε = 0.5, τ = 0.2.

The phase diagram in Figure 4 illustrates the appearance
of the domain of ordered state at small values of the noise
correlation time. If we increase the noise intensity (given
by the exponent a) the noise–induced phase is realized at
large magnitudes of the control parameter. Moreover, for
a range of values of τ the ordered state exists within a
window of the control parameter. It means that the noise
correlations of the weak multiplicative noise creates the
ordered state at ε

(1)
0 and destroys it at ε > ε

(1)
0 . The do-

main of the noise–induced state is decreased with the noise
correlation time growth. Hence, if τ large enough then the
system becomes disordered. Therefore, the ordered state
appearing is possible if the multiplicative noise has a short
memory. Dependencies of the steady states are shown in
Figures 5 and 6. Here thin lines display the saddle point
S and thick lines correspond to the attractive point C
in Figure 3b. Some distinctive feature can be seen from
Figures 5 and 6: the system undergoes a transition of the
first order despite the fact that the bare x4-potential cor-
responds to the continuous one. So, the noise can change
the kind of the transition.
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Fig. 5. Stationary states of the system at a = 0.2: (a) order
parameter vs. control parameter ε; (b) order parameter vs.
noise correlation time.

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4
 τ=0.0
 τ=0.2
 τ=0.4

S
0

ε
(a)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5
 ε = 0.9
 ε = 0.5
 ε = 0.2

S
0

τ
(b)

Fig. 6. Stationary states of the system at a = 0.2: (a) auto-
correlator vs. control parameter ε (b) autocorrelator vs. noise
correlation time.

Let us discuss now the time dependencies correspond-
ing to the phase trajectories. Time dependencies are
shown in Figure 7. According to the phase portraits shown
in Figure 3, at ε 6= [ε(1)

0 , ε
(2)
0 ] the order parameter η falls

down monotonically to the point C0, whereas the auto-
correlator can vary nonmonotonically. Inside the domain
[ε(1)

0 , ε
(2)
0 ], where bifurcation occurs, we can see two do-

mains on the phase plane. These domains correspond to
the small and large values of η. At small initial values
of the order parameter we get the above mentioned be-
haviour. At intermediate and large magnitudes the first
statistical moment reaches the attractive point C. In the
vicinity of the saddle point S we get a critical slowing-
down and a metastable state can exist for a short time.
The similar behaviour can be seen in the vicinity of the
separatrix C0SC.

Let us examine the time dependencies of main aver-
ages analytically. We investigate how the phase trajec-
tory attains the point C0 in the large time limit. Because
equations (22, 23) contain power–law dependencies it is
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Fig. 7. Time dependencies corresponding to the different tra-
jectories on the phase portrait in Figure 3: (a) η vs. ln(t) at
a = 0.2, ε = 0.5, τ = 0.2; (b) S vs. ln(t) at a = 0.2, ε = 0.5,
τ = 0.2.

inconvenient to use the method of ordinary Lyapunov ex-
ponent. It will be more useful to apply the generalized
Tsallis exponent [11]:

eqt → expq(t) ≡ [1 + (1 − q)t]1/1−q. (28)

Here q is the generalized index playing the role of the
Lyapunov exponent. According to the derivation rule

∂

∂t
expq(t) =

(
expq(t)

)q ≡ expq
q(t) (29)

and asymptotic behaviour

lim
t→0

expq(t) → 1 + t, lim
t→∞ expq(t) → [(1 − q)t]1/1−q

(30)

let us assume solutions of equations (22, 23) in the form

η(t) = m expµ(t), S(t) = S0 + n expν(t). (31)
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Fig. 8. Critical value of the order parameter ηc vs. noise cor-
relation time τ at ε = 0.5 and different values of the noise
exponent a.

Inserting equation (31) into equation (22) we receive up
to the first order of m, n � 1:

(ε + κS0)(ε + 4κS0) = −κεα1m
p1 expp1+1−µ

µ (t), (32)

here we take account of the singular contribution only.
In the long–time limit, the function expp1+1−µ

µ (t) can be
taken to be equal to 1. It yields following definitions for
the Lyapunov multiplier m and exponent µ:

m = |(ε + κS0)(ε + 4κS0)/κεα1|1/p1 , (33)

µ = 1 +
1

2(1 − a)
·

Considering the behaviour of the autocorrelator S(t)
up to the first order of amplitudes m and n we obtain

(ε/2 + 2κS0) = exp1−ν
ν

(
ε + α1n

−1mp1 expp1
µ (t) exp−1

ν (t)
)
.

(34)

In the short-time limit we assume exp1−ν
ν → 1. The long-

time asymptote yields expp1
µ (t) exp−1

ν (t) = const. ≡ p−1
1

and, hence, for the exponent and multiplier we have

ν = 2, n =
1

κεp1

(ε + κS0)(ε + 4κS0)
ε/2 − ε + 2κS0

· (35)

According to the obtained time dependencies, we see that
the first statistical moment behaves itself in a power–law
form, i.e. η(t) ∝ t−2(1−a), and the autocorrelator S(t)
follows the hyperbolical dependence S(t) ∝ t−1.

If we pass through the critical value ε
(1)
0 then the sys-

tem can be ordered and we have to take account of an ini-
tial magnitude η(0) of the order parameter. Picking η(0)
larger then a critical value ηc (shown in Fig. 8) we make
the system pass to the ordered state. Let us examine how
phase trajectories attain the point C. In this case we can
not pick up the solution in the form of generalized expo-
nent (28). The latter is applicable for non–linearity effects
which are sufficient to fix the amplitudes m and n. In the
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case under consideration the linear conditions are satisfied
hence, we have to use the Mellin transformations

η(t) = η0 +
∫

mqt
qdq,

S(t) = S0 +
∫

nqt
qdq. (36)

The evolution equations can be transformed to the system
of linear algebraical equations

A11mq + A12nq = 0,

A21mq + A22nq = 0, (37)

where multipliers Aij are functions of the system parame-
ters and coordinates of the point C. The diagonal elements
of the matrix A incorporate terms q/t, so we can rewrite
Aii = A

(0)
ii +q/t. System (37) has a solution if det |A| = 0.

So, if we use the following notation c = −q/t then we get

η(t) = η0 + m exp(−ct ln(t)),
S(t) = S0 + n exp(−ct ln(t)), (38)

here amplitudes m, n correspond to the index q = −ct;
c is the real number whose magnitude can be expressed
from the condition det |A| = 0:

c =
1
2
(A(0)

11 + A
(0)
22 )


1 ±

√√√√1 − 4(A(0)
11 A

(0)
22 − A12A21)

(A(0)
11 + A

(0)
22 )2


 ·

(39)

5 Summary

We have considered the effects of self-correlation in
multiplicative noise and discuss the dynamics of noise–
induced phase transitions in terms of statistical moments.
Colouring the multiplicative noise appears to lead to a

reentrant phase transition that becomes apparent when
the control parameter is increased. Because in the case of
white noise there is only a one usual transition along the
axis of the control parameter [7], one can conclude that
the reentrant transition is a consequence of collaboration
between the nonlinearity and colouring the multiplicative
noise. We show that colouring does not change the time
asymptotes in the vicinity of the attractors related to the
disordered and ordered domains. However, it changes the
amplitudes of the time dependencies. In our opinion, such
behaviour is inherent in all systems with a self-affine phase
space.

The authors thank prof. A.I. Olemskoi for fruitful discussions
and attentive reading of the manuscript.
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